.. _theory: Theoretical background ====================== Super-modes ----------- The 6-equation system for the electric field in a bounded environment can be reduced to the Helmholtz equation as follows, .. math:: H(z)\psi(x,y,z) = \lambda^2\psi(x,y,z) | Here we have: | :math:`H` the Hamiltonian of the system | :math:`\psi` the amplitude of the electric field | :math:`\lambda` the eigenvalue of the problem Applied to the optical mode propagation problem we retrieve the following relation: .. math:: \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k^2n^2(x,y) \right) \psi(x,y,z) = \lambda^2\psi(x,y,z) | Here we have: | :math:`k` the wave-number in of the light field | :math:`n(x,y)` the refractive index (RI) profile of the optical component | :math:`\psi` the amplitude of the electric field ----- Couple mode theory ------------------ In order to study the behavior of the solutions (super-modes) we need to know, how they couple together. In the same RI configuration the modes or orthogonal, i.e: .. math:: \left< \psi_{l,m} \, | \psi_{l',m'} \, \right> = \delta_{l,l'} \,\, \delta_{m,m'} However if the RI configuration is varying in the z-direction coupling can occur between modes. This coupling is defined as follows: .. math:: C_{ij} = \frac{-i}{2} \frac{k^2}{\sqrt{\lambda_i \lambda_2}} \frac{1}{\Delta \lambda_{ij}} \int_A \psi_i(r, \theta) \psi_j(r, \theta) \frac{d}{dz}n^2(r, \theta, z) dr d\theta ----- Mode propagation ---------------- Knowing all the coupling factors and propagation constant for each supermodes at each z-axis slices we can compute the mode-propagation. .. math:: \frac{dU}{dz} = i \begin{bmatrix} \lambda_1 & C_{12} & C_{13} \\ C_{21} & \lambda_2 & C_{23} \\ C_{31} & C_{32} & \lambda_3 \end{bmatrix} U Where U is a vector array containing all the super-modes amplitudes. Adiabatic criterion ------------------- .. math:: \widetilde{C}_{ij} (z) = C_{ij} . \left( \frac{1}{\rho} \frac{d\rho}{dz} \right)^{-1} The respect of the adiabatic criterion ensure that modes wont be coupling together.