Note
Go to the end to download the full example code.
DenseNet Classifier: Detecting Regions of Interest in Synthetic Signals#
This example demonstrates how to use DeepPeak’s DenseNet classifier to identify regions of interest (ROIs) in synthetic 1D signals containing Gaussian peaks.
We will: - Generate a dataset of noisy signals with random Gaussian peaks - Build and train a DenseNet classifier to detect ROIs - Visualize the training process and model predictions
Note
This example is fully reproducible and suitable for Sphinx-Gallery documentation.
Imports and reproducibility#
import numpy as np
from DeepPeak.machine_learning.classifier import WaveNet, BinaryIoU
from DeepPeak.signals import SignalDatasetGenerator
from DeepPeak import kernel
import DeepPeak
np.random.seed(42)
Generate synthetic dataset#
NUM_PEAKS = 3
SEQUENCE_LENGTH = 200
kernel = DeepPeak.kernel.Gaussian(
amplitude=(10, 20),
position=(0.1, 0.9),
width=(0.04 * 1, 0.05 * 1),
)
generator = SignalDatasetGenerator(n_samples=1000, sequence_length=SEQUENCE_LENGTH)
dataset = generator.generate(
kernel=kernel,
n_peaks=(1, NUM_PEAKS),
noise_std=0.03,
categorical_peak_count=False,
compute_region_of_interest=True,
)
Visualize a few example signals and their regions of interest#
_ = dataset.plot(number_of_samples=6, number_of_columns=3)

Build and summarize the WaveNet classifier#
wavenet = WaveNet(
sequence_length=SEQUENCE_LENGTH,
num_filters=64,
num_dilation_layers=3,
kernel_size=4,
optimizer="adam",
loss="binary_crossentropy",
metrics=["accuracy", BinaryIoU(threshold=0.5)],
)
wavenet.build()
<Functional name=WaveNetDetector, built=True>
Train the classifier#
history = wavenet.fit(
dataset.signals,
dataset.region_of_interest,
validation_split=0.2,
epochs=40,
batch_size=64,
)
Epoch 1/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 26s 2s/step - BinaryIoU: 0.0000e+00 - accuracy: 0.6492 - loss: 0.7138
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.0333 - accuracy: 0.6662 - loss: 0.8902
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.0686 - accuracy: 0.7175 - loss: 0.8890
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.0770 - accuracy: 0.7573 - loss: 0.8783
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.0792 - accuracy: 0.7851 - loss: 0.8642
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.0791 - accuracy: 0.8053 - loss: 0.8426
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.0847 - accuracy: 0.8197 - loss: 0.8177
Epoch 1: val_loss improved from None to 0.25263, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 3s 84ms/step - BinaryIoU: 0.1327 - accuracy: 0.8937 - loss: 0.6652 - val_BinaryIoU: 0.0000e+00 - val_accuracy: 0.9501 - val_loss: 0.2526
Epoch 2/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 3s 262ms/step - BinaryIoU: 0.0000e+00 - accuracy: 0.9538 - loss: 0.2471
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 55ms/step - BinaryIoU: 0.0000e+00 - accuracy: 0.9528 - loss: 0.2528
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 57ms/step - BinaryIoU: 0.0000e+00 - accuracy: 0.9526 - loss: 0.2522
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 56ms/step - BinaryIoU: 0.0000e+00 - accuracy: 0.9525 - loss: 0.2478
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 55ms/step - BinaryIoU: 0.0077 - accuracy: 0.9527 - loss: 0.2412
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 55ms/step - BinaryIoU: 0.0329 - accuracy: 0.9529 - loss: 0.2345
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 55ms/step - BinaryIoU: 0.0599 - accuracy: 0.9531 - loss: 0.2281
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.0860 - accuracy: 0.9534 - loss: 0.2220
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.1048 - accuracy: 0.9536 - loss: 0.2161
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.1177 - accuracy: 0.9537 - loss: 0.2108
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.1276 - accuracy: 0.9539 - loss: 0.2058
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.1386 - accuracy: 0.9541 - loss: 0.2011
Epoch 2: val_loss improved from 0.25263 to 0.09274, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 68ms/step - BinaryIoU: 0.2732 - accuracy: 0.9568 - loss: 0.1471 - val_BinaryIoU: 0.5018 - val_accuracy: 0.9592 - val_loss: 0.0927
Epoch 3/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 65ms/step - BinaryIoU: 0.5278 - accuracy: 0.9635 - loss: 0.0805
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 55ms/step - BinaryIoU: 0.5317 - accuracy: 0.9654 - loss: 0.0792
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.4988 - accuracy: 0.9646 - loss: 0.0815
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.4801 - accuracy: 0.9646 - loss: 0.0818
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.4753 - accuracy: 0.9650 - loss: 0.0816
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.4753 - accuracy: 0.9654 - loss: 0.0811
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.4774 - accuracy: 0.9657 - loss: 0.0807
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.4806 - accuracy: 0.9661 - loss: 0.0802
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.4830 - accuracy: 0.9665 - loss: 0.0798
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.4848 - accuracy: 0.9669 - loss: 0.0793
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.4869 - accuracy: 0.9672 - loss: 0.0789
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.4891 - accuracy: 0.9675 - loss: 0.0785
Epoch 3: val_loss improved from 0.09274 to 0.07162, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 65ms/step - BinaryIoU: 0.5174 - accuracy: 0.9709 - loss: 0.0732 - val_BinaryIoU: 0.5991 - val_accuracy: 0.9758 - val_loss: 0.0716
Epoch 4/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 65ms/step - BinaryIoU: 0.6032 - accuracy: 0.9767 - loss: 0.0679
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.5944 - accuracy: 0.9772 - loss: 0.0659
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.5833 - accuracy: 0.9769 - loss: 0.0667
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.5828 - accuracy: 0.9770 - loss: 0.0663
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 54ms/step - BinaryIoU: 0.5834 - accuracy: 0.9770 - loss: 0.0660
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.5831 - accuracy: 0.9769 - loss: 0.0658
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.5838 - accuracy: 0.9768 - loss: 0.0656
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.5832 - accuracy: 0.9768 - loss: 0.0654
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.5831 - accuracy: 0.9767 - loss: 0.0652
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.5833 - accuracy: 0.9767 - loss: 0.0650
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 52ms/step - BinaryIoU: 0.5839 - accuracy: 0.9767 - loss: 0.0648
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 52ms/step - BinaryIoU: 0.5847 - accuracy: 0.9767 - loss: 0.0647
Epoch 4: val_loss improved from 0.07162 to 0.06727, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 61ms/step - BinaryIoU: 0.5951 - accuracy: 0.9768 - loss: 0.0631 - val_BinaryIoU: 0.5818 - val_accuracy: 0.9762 - val_loss: 0.0673
Epoch 5/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.5611 - accuracy: 0.9725 - loss: 0.0749
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.5874 - accuracy: 0.9747 - loss: 0.0681
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.5950 - accuracy: 0.9755 - loss: 0.0652
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.5963 - accuracy: 0.9758 - loss: 0.0643
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.5971 - accuracy: 0.9760 - loss: 0.0638
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.5981 - accuracy: 0.9761 - loss: 0.0634
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.5994 - accuracy: 0.9763 - loss: 0.0630
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6006 - accuracy: 0.9764 - loss: 0.0627
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6009 - accuracy: 0.9765 - loss: 0.0622
Epoch 5: val_loss improved from 0.06727 to 0.06357, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 60ms/step - BinaryIoU: 0.6020 - accuracy: 0.9768 - loss: 0.0601 - val_BinaryIoU: 0.6160 - val_accuracy: 0.9756 - val_loss: 0.0636
Epoch 6/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.6324 - accuracy: 0.9771 - loss: 0.0603
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.5973 - accuracy: 0.9766 - loss: 0.0602
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.5911 - accuracy: 0.9761 - loss: 0.0608
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.5938 - accuracy: 0.9761 - loss: 0.0605
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.5953 - accuracy: 0.9764 - loss: 0.0600
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.5974 - accuracy: 0.9766 - loss: 0.0595
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.5991 - accuracy: 0.9767 - loss: 0.0592
Epoch 6: val_loss improved from 0.06357 to 0.05993, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.6096 - accuracy: 0.9775 - loss: 0.0574 - val_BinaryIoU: 0.6204 - val_accuracy: 0.9777 - val_loss: 0.0599
Epoch 7/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.6740 - accuracy: 0.9827 - loss: 0.0507
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6602 - accuracy: 0.9816 - loss: 0.0519
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6557 - accuracy: 0.9811 - loss: 0.0523
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6540 - accuracy: 0.9809 - loss: 0.0526
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6521 - accuracy: 0.9807 - loss: 0.0529
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6509 - accuracy: 0.9806 - loss: 0.0531
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6493 - accuracy: 0.9804 - loss: 0.0532
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6489 - accuracy: 0.9804 - loss: 0.0533
Epoch 7: val_loss improved from 0.05993 to 0.05771, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.6428 - accuracy: 0.9797 - loss: 0.0539 - val_BinaryIoU: 0.6525 - val_accuracy: 0.9785 - val_loss: 0.0577
Epoch 8/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 62ms/step - BinaryIoU: 0.6843 - accuracy: 0.9813 - loss: 0.0527
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 52ms/step - BinaryIoU: 0.6768 - accuracy: 0.9811 - loss: 0.0520
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6624 - accuracy: 0.9806 - loss: 0.0522
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6595 - accuracy: 0.9805 - loss: 0.0520
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6573 - accuracy: 0.9804 - loss: 0.0518
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6544 - accuracy: 0.9802 - loss: 0.0520
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6532 - accuracy: 0.9801 - loss: 0.0520
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.6517 - accuracy: 0.9801 - loss: 0.0521
Epoch 8: val_loss improved from 0.05771 to 0.05496, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.6433 - accuracy: 0.9797 - loss: 0.0524 - val_BinaryIoU: 0.6505 - val_accuracy: 0.9795 - val_loss: 0.0550
Epoch 9/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.6608 - accuracy: 0.9803 - loss: 0.0528
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6779 - accuracy: 0.9813 - loss: 0.0513
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6767 - accuracy: 0.9814 - loss: 0.0508
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6735 - accuracy: 0.9813 - loss: 0.0506
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6701 - accuracy: 0.9811 - loss: 0.0507
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6687 - accuracy: 0.9811 - loss: 0.0506
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 47ms/step - BinaryIoU: 0.6675 - accuracy: 0.9811 - loss: 0.0506
Epoch 9: val_loss did not improve from 0.05496
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.6604 - accuracy: 0.9809 - loss: 0.0505 - val_BinaryIoU: 0.6600 - val_accuracy: 0.9778 - val_loss: 0.0564
Epoch 10/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.6600 - accuracy: 0.9787 - loss: 0.0537
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6579 - accuracy: 0.9789 - loss: 0.0542
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6589 - accuracy: 0.9795 - loss: 0.0532
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6590 - accuracy: 0.9796 - loss: 0.0529
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6586 - accuracy: 0.9797 - loss: 0.0527
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6587 - accuracy: 0.9798 - loss: 0.0525
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6591 - accuracy: 0.9799 - loss: 0.0523
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6573 - accuracy: 0.9799 - loss: 0.0522
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6569 - accuracy: 0.9799 - loss: 0.0522
Epoch 10: val_loss did not improve from 0.05496
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 56ms/step - BinaryIoU: 0.6552 - accuracy: 0.9801 - loss: 0.0512 - val_BinaryIoU: 0.5315 - val_accuracy: 0.9751 - val_loss: 0.0613
Epoch 11/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.5766 - accuracy: 0.9782 - loss: 0.0534
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6134 - accuracy: 0.9790 - loss: 0.0517
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6198 - accuracy: 0.9788 - loss: 0.0521
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6212 - accuracy: 0.9788 - loss: 0.0523
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6223 - accuracy: 0.9788 - loss: 0.0525
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6240 - accuracy: 0.9788 - loss: 0.0526
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6281 - accuracy: 0.9788 - loss: 0.0525
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6299 - accuracy: 0.9789 - loss: 0.0524
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.6320 - accuracy: 0.9790 - loss: 0.0522
Epoch 11: val_loss improved from 0.05496 to 0.05377, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.6439 - accuracy: 0.9795 - loss: 0.0513 - val_BinaryIoU: 0.6311 - val_accuracy: 0.9799 - val_loss: 0.0538
Epoch 12/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.5911 - accuracy: 0.9777 - loss: 0.0554
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6115 - accuracy: 0.9792 - loss: 0.0529
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6345 - accuracy: 0.9805 - loss: 0.0505
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6443 - accuracy: 0.9808 - loss: 0.0497
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6490 - accuracy: 0.9809 - loss: 0.0495
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6535 - accuracy: 0.9810 - loss: 0.0492
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6576 - accuracy: 0.9812 - loss: 0.0489
Epoch 12: val_loss improved from 0.05377 to 0.05047, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.6803 - accuracy: 0.9822 - loss: 0.0468 - val_BinaryIoU: 0.6789 - val_accuracy: 0.9806 - val_loss: 0.0505
Epoch 13/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 62ms/step - BinaryIoU: 0.6563 - accuracy: 0.9793 - loss: 0.0517
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6666 - accuracy: 0.9798 - loss: 0.0508
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6683 - accuracy: 0.9804 - loss: 0.0496
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6705 - accuracy: 0.9807 - loss: 0.0490
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6724 - accuracy: 0.9809 - loss: 0.0485
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6761 - accuracy: 0.9813 - loss: 0.0478
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6781 - accuracy: 0.9815 - loss: 0.0475
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.6793 - accuracy: 0.9816 - loss: 0.0472
Epoch 13: val_loss improved from 0.05047 to 0.04892, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.6853 - accuracy: 0.9823 - loss: 0.0461 - val_BinaryIoU: 0.6889 - val_accuracy: 0.9811 - val_loss: 0.0489
Epoch 14/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.7045 - accuracy: 0.9827 - loss: 0.0439
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6888 - accuracy: 0.9815 - loss: 0.0449
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6878 - accuracy: 0.9816 - loss: 0.0449
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6888 - accuracy: 0.9818 - loss: 0.0446
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6889 - accuracy: 0.9819 - loss: 0.0445
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6888 - accuracy: 0.9821 - loss: 0.0444
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 47ms/step - BinaryIoU: 0.6896 - accuracy: 0.9821 - loss: 0.0443
Epoch 14: val_loss improved from 0.04892 to 0.04685, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 58ms/step - BinaryIoU: 0.6928 - accuracy: 0.9826 - loss: 0.0442 - val_BinaryIoU: 0.6919 - val_accuracy: 0.9815 - val_loss: 0.0468
Epoch 15/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.7238 - accuracy: 0.9837 - loss: 0.0416
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7171 - accuracy: 0.9833 - loss: 0.0425
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7106 - accuracy: 0.9832 - loss: 0.0427
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7064 - accuracy: 0.9830 - loss: 0.0429
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7030 - accuracy: 0.9828 - loss: 0.0432
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7019 - accuracy: 0.9828 - loss: 0.0432
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 47ms/step - BinaryIoU: 0.7017 - accuracy: 0.9829 - loss: 0.0431
Epoch 15: val_loss did not improve from 0.04685
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7007 - accuracy: 0.9832 - loss: 0.0427 - val_BinaryIoU: 0.6641 - val_accuracy: 0.9803 - val_loss: 0.0469
Epoch 16/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.6889 - accuracy: 0.9836 - loss: 0.0380
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6893 - accuracy: 0.9832 - loss: 0.0390
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6864 - accuracy: 0.9827 - loss: 0.0405
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6827 - accuracy: 0.9820 - loss: 0.0424
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6832 - accuracy: 0.9818 - loss: 0.0431
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6832 - accuracy: 0.9818 - loss: 0.0434
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6841 - accuracy: 0.9818 - loss: 0.0435
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6844 - accuracy: 0.9819 - loss: 0.0434
Epoch 16: val_loss did not improve from 0.04685
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 56ms/step - BinaryIoU: 0.6850 - accuracy: 0.9821 - loss: 0.0430 - val_BinaryIoU: 0.6804 - val_accuracy: 0.9806 - val_loss: 0.0489
Epoch 17/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 7s 589ms/step - BinaryIoU: 0.6973 - accuracy: 0.9827 - loss: 0.0424
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6913 - accuracy: 0.9825 - loss: 0.0425
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6919 - accuracy: 0.9826 - loss: 0.0423
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6929 - accuracy: 0.9827 - loss: 0.0422
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6950 - accuracy: 0.9828 - loss: 0.0419
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6942 - accuracy: 0.9827 - loss: 0.0420
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6924 - accuracy: 0.9826 - loss: 0.0422
Epoch 17: val_loss did not improve from 0.04685
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.6839 - accuracy: 0.9822 - loss: 0.0427 - val_BinaryIoU: 0.6402 - val_accuracy: 0.9734 - val_loss: 0.0578
Epoch 18/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.6219 - accuracy: 0.9736 - loss: 0.0553
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 53ms/step - BinaryIoU: 0.6356 - accuracy: 0.9758 - loss: 0.0526
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 52ms/step - BinaryIoU: 0.6429 - accuracy: 0.9771 - loss: 0.0515
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6511 - accuracy: 0.9781 - loss: 0.0503
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6604 - accuracy: 0.9791 - loss: 0.0489
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6652 - accuracy: 0.9797 - loss: 0.0479
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6687 - accuracy: 0.9801 - loss: 0.0472
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6697 - accuracy: 0.9802 - loss: 0.0470
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6709 - accuracy: 0.9803 - loss: 0.0467
Epoch 18: val_loss improved from 0.04685 to 0.04467, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.6869 - accuracy: 0.9821 - loss: 0.0432 - val_BinaryIoU: 0.6928 - val_accuracy: 0.9819 - val_loss: 0.0447
Epoch 19/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.7405 - accuracy: 0.9855 - loss: 0.0362
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7162 - accuracy: 0.9841 - loss: 0.0395
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7059 - accuracy: 0.9833 - loss: 0.0413
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6991 - accuracy: 0.9829 - loss: 0.0418
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6982 - accuracy: 0.9828 - loss: 0.0418
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6973 - accuracy: 0.9827 - loss: 0.0419
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6966 - accuracy: 0.9827 - loss: 0.0420
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6953 - accuracy: 0.9826 - loss: 0.0420
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.6949 - accuracy: 0.9826 - loss: 0.0419
Epoch 19: val_loss improved from 0.04467 to 0.04289, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.6927 - accuracy: 0.9827 - loss: 0.0414 - val_BinaryIoU: 0.7068 - val_accuracy: 0.9831 - val_loss: 0.0429
Epoch 20/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.7684 - accuracy: 0.9884 - loss: 0.0333
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7393 - accuracy: 0.9857 - loss: 0.0366
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7332 - accuracy: 0.9854 - loss: 0.0368
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7306 - accuracy: 0.9853 - loss: 0.0369
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7290 - accuracy: 0.9852 - loss: 0.0370
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7284 - accuracy: 0.9851 - loss: 0.0371
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7278 - accuracy: 0.9851 - loss: 0.0372
Epoch 20: val_loss improved from 0.04289 to 0.04167, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.7216 - accuracy: 0.9845 - loss: 0.0381 - val_BinaryIoU: 0.7125 - val_accuracy: 0.9835 - val_loss: 0.0417
Epoch 21/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.7463 - accuracy: 0.9854 - loss: 0.0352
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7256 - accuracy: 0.9846 - loss: 0.0373
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7242 - accuracy: 0.9847 - loss: 0.0374
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.7249 - accuracy: 0.9848 - loss: 0.0374
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.7242 - accuracy: 0.9848 - loss: 0.0374
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.7229 - accuracy: 0.9848 - loss: 0.0374
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.7205 - accuracy: 0.9846 - loss: 0.0377
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7193 - accuracy: 0.9845 - loss: 0.0379
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7179 - accuracy: 0.9844 - loss: 0.0382
Epoch 21: val_loss did not improve from 0.04167
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 56ms/step - BinaryIoU: 0.7115 - accuracy: 0.9838 - loss: 0.0395 - val_BinaryIoU: 0.6730 - val_accuracy: 0.9825 - val_loss: 0.0451
Epoch 22/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 63ms/step - BinaryIoU: 0.6588 - accuracy: 0.9830 - loss: 0.0414
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.6822 - accuracy: 0.9842 - loss: 0.0385
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7011 - accuracy: 0.9846 - loss: 0.0377
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7069 - accuracy: 0.9846 - loss: 0.0378
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7087 - accuracy: 0.9845 - loss: 0.0379
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7109 - accuracy: 0.9845 - loss: 0.0377
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7129 - accuracy: 0.9846 - loss: 0.0376
Epoch 22: val_loss improved from 0.04167 to 0.04163, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.7211 - accuracy: 0.9846 - loss: 0.0370 - val_BinaryIoU: 0.6793 - val_accuracy: 0.9824 - val_loss: 0.0416
Epoch 23/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.6568 - accuracy: 0.9820 - loss: 0.0408
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6874 - accuracy: 0.9826 - loss: 0.0400
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.6970 - accuracy: 0.9831 - loss: 0.0399
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7036 - accuracy: 0.9834 - loss: 0.0395
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7058 - accuracy: 0.9836 - loss: 0.0393
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7089 - accuracy: 0.9837 - loss: 0.0391
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7102 - accuracy: 0.9838 - loss: 0.0389
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 47ms/step - BinaryIoU: 0.7123 - accuracy: 0.9839 - loss: 0.0387
Epoch 23: val_loss improved from 0.04163 to 0.04125, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 58ms/step - BinaryIoU: 0.7247 - accuracy: 0.9848 - loss: 0.0370 - val_BinaryIoU: 0.7273 - val_accuracy: 0.9832 - val_loss: 0.0413
Epoch 24/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 63ms/step - BinaryIoU: 0.7500 - accuracy: 0.9866 - loss: 0.0324
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7550 - accuracy: 0.9870 - loss: 0.0320
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7516 - accuracy: 0.9869 - loss: 0.0320
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7503 - accuracy: 0.9868 - loss: 0.0322
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7473 - accuracy: 0.9866 - loss: 0.0327
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7458 - accuracy: 0.9864 - loss: 0.0330
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7453 - accuracy: 0.9863 - loss: 0.0332
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7436 - accuracy: 0.9862 - loss: 0.0335
Epoch 24: val_loss did not improve from 0.04125
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7361 - accuracy: 0.9855 - loss: 0.0351 - val_BinaryIoU: 0.6413 - val_accuracy: 0.9809 - val_loss: 0.0470
Epoch 25/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.6822 - accuracy: 0.9840 - loss: 0.0354
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7084 - accuracy: 0.9850 - loss: 0.0340
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7110 - accuracy: 0.9847 - loss: 0.0353
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7094 - accuracy: 0.9844 - loss: 0.0366
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7092 - accuracy: 0.9843 - loss: 0.0370
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7089 - accuracy: 0.9842 - loss: 0.0372
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7079 - accuracy: 0.9841 - loss: 0.0376
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7073 - accuracy: 0.9840 - loss: 0.0379
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7066 - accuracy: 0.9839 - loss: 0.0381
Epoch 25: val_loss did not improve from 0.04125
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 56ms/step - BinaryIoU: 0.6999 - accuracy: 0.9830 - loss: 0.0409 - val_BinaryIoU: 0.6676 - val_accuracy: 0.9823 - val_loss: 0.0433
Epoch 26/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 62ms/step - BinaryIoU: 0.6624 - accuracy: 0.9813 - loss: 0.0461
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6752 - accuracy: 0.9827 - loss: 0.0432
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6836 - accuracy: 0.9831 - loss: 0.0423
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6940 - accuracy: 0.9835 - loss: 0.0408
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.6992 - accuracy: 0.9837 - loss: 0.0402
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7037 - accuracy: 0.9839 - loss: 0.0396
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7063 - accuracy: 0.9840 - loss: 0.0394
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 47ms/step - BinaryIoU: 0.7088 - accuracy: 0.9841 - loss: 0.0391
Epoch 26: val_loss did not improve from 0.04125
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7237 - accuracy: 0.9848 - loss: 0.0374 - val_BinaryIoU: 0.6782 - val_accuracy: 0.9826 - val_loss: 0.0413
Epoch 27/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.7211 - accuracy: 0.9849 - loss: 0.0364
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7276 - accuracy: 0.9853 - loss: 0.0358
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7322 - accuracy: 0.9855 - loss: 0.0353
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7312 - accuracy: 0.9854 - loss: 0.0355
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7305 - accuracy: 0.9854 - loss: 0.0355
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7305 - accuracy: 0.9854 - loss: 0.0355
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7309 - accuracy: 0.9854 - loss: 0.0355
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7305 - accuracy: 0.9854 - loss: 0.0356
Epoch 27: val_loss improved from 0.04125 to 0.04011, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.7315 - accuracy: 0.9852 - loss: 0.0361 - val_BinaryIoU: 0.6809 - val_accuracy: 0.9826 - val_loss: 0.0401
Epoch 28/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 62ms/step - BinaryIoU: 0.7061 - accuracy: 0.9848 - loss: 0.0345
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7054 - accuracy: 0.9850 - loss: 0.0340
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7144 - accuracy: 0.9853 - loss: 0.0339
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7193 - accuracy: 0.9854 - loss: 0.0340
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7205 - accuracy: 0.9853 - loss: 0.0342
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7219 - accuracy: 0.9853 - loss: 0.0343
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7224 - accuracy: 0.9853 - loss: 0.0343
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7229 - accuracy: 0.9853 - loss: 0.0344
Epoch 28: val_loss improved from 0.04011 to 0.03680, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.7300 - accuracy: 0.9853 - loss: 0.0347 - val_BinaryIoU: 0.7292 - val_accuracy: 0.9849 - val_loss: 0.0368
Epoch 29/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.7466 - accuracy: 0.9868 - loss: 0.0302
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.7519 - accuracy: 0.9867 - loss: 0.0308
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7462 - accuracy: 0.9863 - loss: 0.0321
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7438 - accuracy: 0.9861 - loss: 0.0327
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7431 - accuracy: 0.9860 - loss: 0.0330
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7431 - accuracy: 0.9860 - loss: 0.0332
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 47ms/step - BinaryIoU: 0.7425 - accuracy: 0.9859 - loss: 0.0334
Epoch 29: val_loss did not improve from 0.03680
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7395 - accuracy: 0.9858 - loss: 0.0342 - val_BinaryIoU: 0.7316 - val_accuracy: 0.9826 - val_loss: 0.0423
Epoch 30/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 62ms/step - BinaryIoU: 0.7545 - accuracy: 0.9851 - loss: 0.0369
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7437 - accuracy: 0.9850 - loss: 0.0359
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7377 - accuracy: 0.9850 - loss: 0.0354
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7387 - accuracy: 0.9851 - loss: 0.0350
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7396 - accuracy: 0.9852 - loss: 0.0349
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7406 - accuracy: 0.9852 - loss: 0.0347
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7415 - accuracy: 0.9854 - loss: 0.0345
Epoch 30: val_loss did not improve from 0.03680
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7488 - accuracy: 0.9864 - loss: 0.0326 - val_BinaryIoU: 0.7329 - val_accuracy: 0.9832 - val_loss: 0.0400
Epoch 31/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.7669 - accuracy: 0.9855 - loss: 0.0355
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7656 - accuracy: 0.9865 - loss: 0.0336
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7607 - accuracy: 0.9866 - loss: 0.0330
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7589 - accuracy: 0.9866 - loss: 0.0326
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7581 - accuracy: 0.9866 - loss: 0.0325
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7579 - accuracy: 0.9867 - loss: 0.0323
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7578 - accuracy: 0.9867 - loss: 0.0323
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.7577 - accuracy: 0.9867 - loss: 0.0322
Epoch 31: val_loss improved from 0.03680 to 0.03607, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.7568 - accuracy: 0.9868 - loss: 0.0320 - val_BinaryIoU: 0.7452 - val_accuracy: 0.9847 - val_loss: 0.0361
Epoch 32/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.7626 - accuracy: 0.9860 - loss: 0.0337
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7702 - accuracy: 0.9870 - loss: 0.0313
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7702 - accuracy: 0.9871 - loss: 0.0311
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7697 - accuracy: 0.9871 - loss: 0.0311
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7660 - accuracy: 0.9870 - loss: 0.0311
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7636 - accuracy: 0.9869 - loss: 0.0313
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7625 - accuracy: 0.9869 - loss: 0.0313
Epoch 32: val_loss did not improve from 0.03607
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7471 - accuracy: 0.9862 - loss: 0.0324 - val_BinaryIoU: 0.7367 - val_accuracy: 0.9835 - val_loss: 0.0397
Epoch 33/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.7488 - accuracy: 0.9834 - loss: 0.0407
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7542 - accuracy: 0.9847 - loss: 0.0377
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7511 - accuracy: 0.9849 - loss: 0.0371
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7497 - accuracy: 0.9850 - loss: 0.0367
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7501 - accuracy: 0.9852 - loss: 0.0363
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7503 - accuracy: 0.9853 - loss: 0.0360
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7513 - accuracy: 0.9855 - loss: 0.0354
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.7526 - accuracy: 0.9857 - loss: 0.0349
Epoch 33: val_loss improved from 0.03607 to 0.03340, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.7607 - accuracy: 0.9870 - loss: 0.0316 - val_BinaryIoU: 0.7630 - val_accuracy: 0.9868 - val_loss: 0.0334
Epoch 34/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 62ms/step - BinaryIoU: 0.7701 - accuracy: 0.9877 - loss: 0.0298
2/13 ━━━━━━━━━━━━━━━━━━━━ 0s 52ms/step - BinaryIoU: 0.7642 - accuracy: 0.9871 - loss: 0.0313
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.7615 - accuracy: 0.9868 - loss: 0.0323
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7586 - accuracy: 0.9867 - loss: 0.0323
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7579 - accuracy: 0.9868 - loss: 0.0320
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7580 - accuracy: 0.9868 - loss: 0.0320
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7581 - accuracy: 0.9868 - loss: 0.0319
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7579 - accuracy: 0.9868 - loss: 0.0318
Epoch 34: val_loss did not improve from 0.03340
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 56ms/step - BinaryIoU: 0.7573 - accuracy: 0.9869 - loss: 0.0312 - val_BinaryIoU: 0.7443 - val_accuracy: 0.9840 - val_loss: 0.0379
Epoch 35/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.7951 - accuracy: 0.9882 - loss: 0.0286
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.7797 - accuracy: 0.9877 - loss: 0.0302
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7704 - accuracy: 0.9873 - loss: 0.0311
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7684 - accuracy: 0.9872 - loss: 0.0312
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7671 - accuracy: 0.9872 - loss: 0.0313
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7658 - accuracy: 0.9872 - loss: 0.0313
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7652 - accuracy: 0.9872 - loss: 0.0312
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7652 - accuracy: 0.9872 - loss: 0.0312
Epoch 35: val_loss did not improve from 0.03340
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7618 - accuracy: 0.9872 - loss: 0.0313 - val_BinaryIoU: 0.7341 - val_accuracy: 0.9834 - val_loss: 0.0392
Epoch 36/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 61ms/step - BinaryIoU: 0.7409 - accuracy: 0.9850 - loss: 0.0334
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7453 - accuracy: 0.9859 - loss: 0.0320
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7503 - accuracy: 0.9862 - loss: 0.0314
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7562 - accuracy: 0.9866 - loss: 0.0309
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7587 - accuracy: 0.9868 - loss: 0.0307
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7607 - accuracy: 0.9869 - loss: 0.0305
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 47ms/step - BinaryIoU: 0.7625 - accuracy: 0.9871 - loss: 0.0303
Epoch 36: val_loss did not improve from 0.03340
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7737 - accuracy: 0.9878 - loss: 0.0290 - val_BinaryIoU: 0.7505 - val_accuracy: 0.9864 - val_loss: 0.0345
Epoch 37/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.7940 - accuracy: 0.9892 - loss: 0.0302
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7976 - accuracy: 0.9892 - loss: 0.0286
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7977 - accuracy: 0.9891 - loss: 0.0285
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7955 - accuracy: 0.9890 - loss: 0.0282
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7933 - accuracy: 0.9889 - loss: 0.0281
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7923 - accuracy: 0.9888 - loss: 0.0281
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7911 - accuracy: 0.9888 - loss: 0.0280
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.7903 - accuracy: 0.9887 - loss: 0.0280
Epoch 37: val_loss improved from 0.03340 to 0.03166, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.7851 - accuracy: 0.9886 - loss: 0.0279 - val_BinaryIoU: 0.7737 - val_accuracy: 0.9873 - val_loss: 0.0317
Epoch 38/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.7660 - accuracy: 0.9866 - loss: 0.0301
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 51ms/step - BinaryIoU: 0.7727 - accuracy: 0.9871 - loss: 0.0296
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7701 - accuracy: 0.9871 - loss: 0.0301
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7726 - accuracy: 0.9873 - loss: 0.0298
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7740 - accuracy: 0.9875 - loss: 0.0296
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7747 - accuracy: 0.9876 - loss: 0.0295
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7749 - accuracy: 0.9876 - loss: 0.0295
Epoch 38: val_loss did not improve from 0.03166
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7786 - accuracy: 0.9882 - loss: 0.0287 - val_BinaryIoU: 0.7716 - val_accuracy: 0.9864 - val_loss: 0.0326
Epoch 39/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.8221 - accuracy: 0.9903 - loss: 0.0241
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.8073 - accuracy: 0.9894 - loss: 0.0253
5/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7981 - accuracy: 0.9891 - loss: 0.0260
7/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7907 - accuracy: 0.9886 - loss: 0.0269
9/13 ━━━━━━━━━━━━━━━━━━━━ 0s 50ms/step - BinaryIoU: 0.7870 - accuracy: 0.9884 - loss: 0.0274
11/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7842 - accuracy: 0.9882 - loss: 0.0278
13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - BinaryIoU: 0.7829 - accuracy: 0.9882 - loss: 0.0280
Epoch 39: val_loss did not improve from 0.03166
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 55ms/step - BinaryIoU: 0.7761 - accuracy: 0.9879 - loss: 0.0289 - val_BinaryIoU: 0.7186 - val_accuracy: 0.9852 - val_loss: 0.0344
Epoch 40/40
1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 60ms/step - BinaryIoU: 0.7430 - accuracy: 0.9879 - loss: 0.0293
3/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7645 - accuracy: 0.9885 - loss: 0.0279
4/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7688 - accuracy: 0.9885 - loss: 0.0277
6/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7750 - accuracy: 0.9886 - loss: 0.0276
8/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7789 - accuracy: 0.9887 - loss: 0.0273
10/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7817 - accuracy: 0.9888 - loss: 0.0271
12/13 ━━━━━━━━━━━━━━━━━━━━ 0s 49ms/step - BinaryIoU: 0.7832 - accuracy: 0.9888 - loss: 0.0271
Epoch 40: val_loss improved from 0.03166 to 0.02985, saving model to /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
13/13 ━━━━━━━━━━━━━━━━━━━━ 1s 59ms/step - BinaryIoU: 0.7907 - accuracy: 0.9890 - loss: 0.0269 - val_BinaryIoU: 0.7850 - val_accuracy: 0.9880 - val_loss: 0.0298
Restored best model weights from /tmp/wavenet_ckpt_qrcqia5q/best.weights.h5
Plot training history#
_ = wavenet.plot_model_history()

Predict and visualize on a test signal#
_ = wavenet.plot_prediction(dataset=dataset, number_of_samples=12, number_of_columns=3, threshold=0.1, randomize_signal=True)

Total running time of the script: (0 minutes 38.283 seconds)