Note
Go to the end to download the full example code.
J Estimator Validation — Fixed Bead Size, Variable Illumination#
This example demonstrates how to estimate the J parameter, which quantifies how the relative noise (robust coefficient of variation) scales with the signal strength under varying illumination power. We simulate a flow cytometry system with fixed bead diameter and varying illumination.
Setup and configuration#
import numpy as np
from FlowCyPy.fluidics import Fluidics, FlowCell, ScattererCollection
from FlowCyPy.opto_electronics import OptoElectronics, source, TransimpedanceAmplifier, Detector
from FlowCyPy.signal_processing import SignalProcessing, Digitizer
from FlowCyPy import FlowCytometer, SimulationSettings, units
from FlowCyPy.calibration import JEstimator
Configure simulation-level noise assumptions
SimulationSettings.include_noises = True
SimulationSettings.include_shot_noise = True
SimulationSettings.include_dark_current_noise = False
SimulationSettings.include_source_noise = False
SimulationSettings.include_amplifier_noise = False
SimulationSettings.assume_perfect_hydrodynamic_focusing = True
SimulationSettings.assume_amplifier_bandwidth_is_infinite = True
SimulationSettings.assume_perfect_digitizer = True
SimulationSettings.evenly_spaced_events = True
np.random.seed(3) # Reproducibility
Construct simulation components#
flow_cell = FlowCell(
sample_volume_flow=80 * units.microliter / units.minute,
sheath_volume_flow=1 * units.milliliter / units.minute,
width=400 * units.micrometer,
height=400 * units.micrometer,
)
scatterer_collection = ScattererCollection(medium_refractive_index=1.33 * units.RIU)
fluidics = Fluidics(
scatterer_collection=scatterer_collection,
flow_cell=flow_cell
)
source = source.GaussianBeam(
numerical_aperture=0.2 * units.AU,
wavelength=450 * units.nanometer,
optical_power=0 * units.watt
)
digitizer = Digitizer(
bit_depth='16bit',
saturation_levels=(0 * units.volt, 2 * units.volt),
sampling_rate=60 * units.megahertz,
)
amplifier = TransimpedanceAmplifier(
gain=10 * units.volt / units.ampere,
bandwidth=60 * units.megahertz,
)
detector_0 = Detector(
name='default',
phi_angle=0 * units.degree, # Forward scatter
numerical_aperture=0.2 * units.AU,
cache_numerical_aperture=0.0 * units.AU,
responsivity=1 * units.ampere / units.watt,
)
opto_electronics = OptoElectronics(
detectors=[detector_0],
source=source,
amplifier=amplifier
)
signal_processing = SignalProcessing(
digitizer=digitizer,
analog_processing=[],
)
flow_cytometer = FlowCytometer(
opto_electronics=opto_electronics,
fluidics=fluidics,
signal_processing=signal_processing,
background_power=source.optical_power * 0.001
)
Run J Estimation Simulation#
j_estimator = JEstimator(debug_mode=False)
j_estimator.add_batch(
illumination_powers=np.linspace(10, 380, 25) * units.milliwatt,
bead_diameter=400 * units.nanometer,
flow_cytometer=flow_cytometer,
particle_count=50 * units.particle
)
[INFO] Running simulation 1/25
[INFO] Running simulation 2/25
[INFO] Running simulation 3/25
[INFO] Running simulation 4/25
[INFO] Running simulation 5/25
[INFO] Running simulation 6/25
[INFO] Running simulation 7/25
[INFO] Running simulation 8/25
[INFO] Running simulation 9/25
[INFO] Running simulation 10/25
[INFO] Running simulation 11/25
[INFO] Running simulation 12/25
[INFO] Running simulation 13/25
[INFO] Running simulation 14/25
[INFO] Running simulation 15/25
[INFO] Running simulation 16/25
[INFO] Running simulation 17/25
[INFO] Running simulation 18/25
[INFO] Running simulation 19/25
[INFO] Running simulation 20/25
[INFO] Running simulation 21/25
[INFO] Running simulation 22/25
[INFO] Running simulation 23/25
[INFO] Running simulation 24/25
[INFO] Running simulation 25/25
Plot estimation and diagnostics#
j_estimator.plot()

Plot relevant statistics#
j_estimator.plot_statistics()

Total running time of the script: (0 minutes 49.183 seconds)