Note
Go to the end to download the full example code.
K Estimator Validation — Fixed Illumination, Variable Bead Size#
This example demonstrates how to estimate the K parameter, which characterizes how the absolute signal noise (Robust STD) scales with the square root of the median signal when varying bead size under fixed illumination power.
Setup and configuration#
import numpy as np
from FlowCyPy.fluidics import Fluidics, FlowCell, ScattererCollection
from FlowCyPy.opto_electronics import OptoElectronics, source, TransimpedanceAmplifier, Detector
from FlowCyPy.signal_processing import SignalProcessing, Digitizer
from FlowCyPy import FlowCytometer, SimulationSettings, units
from FlowCyPy.calibration import KEstimator
Configure simulation-level noise assumptions
SimulationSettings.include_noises = True
SimulationSettings.include_shot_noise = True
SimulationSettings.include_dark_current_noise = False
SimulationSettings.include_source_noise = False
SimulationSettings.include_amplifier_noise = False
SimulationSettings.assume_perfect_hydrodynamic_focusing = True
SimulationSettings.assume_amplifier_bandwidth_is_infinite = True
SimulationSettings.assume_perfect_digitizer = True
SimulationSettings.evenly_spaced_events = True
np.random.seed(3) # Reproducibility
Construct simulation components#
flow_cell = FlowCell(
sample_volume_flow=80 * units.microliter / units.minute,
sheath_volume_flow=1 * units.milliliter / units.minute,
width=400 * units.micrometer,
height=400 * units.micrometer,
)
scatterer_collection = ScattererCollection(medium_refractive_index=1.33 * units.RIU)
fluidics = Fluidics(
scatterer_collection=scatterer_collection,
flow_cell=flow_cell
)
_source = source.GaussianBeam(
numerical_aperture=0.2 * units.AU,
wavelength=450 * units.nanometer,
optical_power=150 * units.milliwatt # Fixed illumination power
)
digitizer = Digitizer(
bit_depth='16bit',
saturation_levels=(0 * units.volt, 2 * units.volt),
sampling_rate=60 * units.megahertz,
)
amplifier = TransimpedanceAmplifier(
gain=10 * units.volt / units.ampere,
bandwidth=60 * units.megahertz,
)
detector_0 = Detector(
name='default',
phi_angle=0 * units.degree,
numerical_aperture=0.2 * units.AU,
cache_numerical_aperture=0.0 * units.AU,
responsivity=1 * units.ampere / units.watt,
)
opto_electronics = OptoElectronics(
detectors=[detector_0],
source=_source,
amplifier=amplifier
)
signal_processing = SignalProcessing(
digitizer=digitizer,
analog_processing=[],
)
flow_cytometer = FlowCytometer(
opto_electronics=opto_electronics,
fluidics=fluidics,
signal_processing=signal_processing,
background_power=_source.optical_power * 0.001
)
Run K Estimation Simulation#
k_estimator = KEstimator(debug_mode=False)
k_estimator.add_batch(
bead_diameters=np.linspace(300, 900, 15) * units.nanometer,
illumination_power=_source.optical_power,
flow_cytometer=flow_cytometer,
particle_count=50 * units.particle
)
[INFO] Simulating bead 1/15: 300.0 nm
[INFO] Simulating bead 2/15: 342.85714285714283 nm
[INFO] Simulating bead 3/15: 385.7142857142857 nm
[INFO] Simulating bead 4/15: 428.57142857142856 nm
[INFO] Simulating bead 5/15: 471.42857142857144 nm
[INFO] Simulating bead 6/15: 514.2857142857142 nm
[INFO] Simulating bead 7/15: 557.1428571428571 nm
[INFO] Simulating bead 8/15: 600.0 nm
[INFO] Simulating bead 9/15: 642.8571428571429 nm
[INFO] Simulating bead 10/15: 685.7142857142857 nm
[INFO] Simulating bead 11/15: 728.5714285714286 nm
[INFO] Simulating bead 12/15: 771.4285714285713 nm
[INFO] Simulating bead 13/15: 814.2857142857142 nm
[INFO] Simulating bead 14/15: 857.1428571428571 nm
[INFO] Simulating bead 15/15: 900.0 nm
Plot estimation#
k_estimator.plot()

Plot relevant statistics#
k_estimator.plot_statistics()

Total running time of the script: (0 minutes 29.756 seconds)