Sphere: Coupling vs wavelength#

Importing the package dependencies: numpy, PyMieSim

import numpy as np
from PyMieSim.experiment.detector import CoherentMode
from PyMieSim.experiment.scatterer import Sphere
from PyMieSim.experiment.source import Gaussian
from PyMieSim.experiment import Setup
from PyOptik import Material
from PyMieSim.units import nanometer, degree, watt, AU, RIU

Defining the source to be employed.

source = Gaussian(
    wavelength=np.linspace(950, 1050, 200) * nanometer,
    polarization=0 * degree,
    optical_power=1e-3 * watt,
    NA=0.2 * AU
)

Defining the ranging parameters for the scatterer distribution

scatterer = Sphere(
    diameter=np.linspace(100, 8000, 5) * nanometer,
    property=Material.BK7,
    medium_property=1 * RIU,
    source=source
)

Defining the detector to be employed.

detector = CoherentMode(
    mode_number="LP11",
    NA=[0.05, 0.01] * AU,
    phi_offset=-180 * degree,
    gamma_offset=0 * degree,
    polarization_filter=[0, 90] * degree,
    rotation=0 * degree,
    sampling=300 * AU
)

Defining the experiment setup

experiment = Setup(scatterer=scatterer, source=source, detector=detector)
/opt/hostedtoolcache/Python/3.11.13/x64/lib/python3.11/site-packages/PyOptik/material/base_class.py:60: UserWarning: Wavelength range goes from 949.9999999999999 nm to 1.05 µm which is outside the allowable range of 5.0 µm to 33.333 µm µm. [Material: BK7]
  warnings.warn(

Measuring the properties

dataframe = experiment.get('coupling', scale_unit=True)

Plotting the results

dataframe.plot(x="source:wavelength", std='scatterer:diameter')
sphere coupling vs wavelength
<Axes: xlabel='nanometer', ylabel='femtowatt'>

Total running time of the script: (0 minutes 1.595 seconds)

Gallery generated by Sphinx-Gallery